Matematické vzorce (LaTeX): Porovnání verzí
| Řádek 208: | Řádek 208: | ||
== Zdroj == | == Zdroj == | ||
Článek je částečně převzat z wikipedie, přečíst si jej můžete [https://cs.wikipedia.org/wiki/N%C3%A1pov%C4%9Bda:Matematick%C3%A9_vzorce?veaction=edit zde] | Článek je částečně převzat z wikipedie, přečíst si jej můžete [https://cs.wikipedia.org/wiki/N%C3%A1pov%C4%9Bda:Matematick%C3%A9_vzorce?veaction=edit zde] | ||
| − | [[Kategorie:Nápověda| | + | [[Kategorie:Nápověda|Matematické vzorce (LaTeX)]] |
Verze z 21. 11. 2015, 14:21
Pro spoustu údajů je potřeba napsat nějaký ten vzoreček nebo vztah. Někdy stačí napsat vztah normálním textem, ale jakmile je trochu složitější, je třeba to udělat trochu jinak. Vzorec se zapisuje ve formátu programu TeX mezi značky <math> a </math>, např. <math>x = y^2</math> vytvoří zápis Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x = y^2} .
U každého vzorce musí být popis toho, co jednotlivé proměnné, případně další netriviální, nebo nějak zvláštně užité symboly, znamenají. Zrovna tak je dobré se trošku rozepsat o významu jednotlivých částí vzorce, pokud je složitější. To, že je vzorec samozřejmý pro Vás, neznamená, že je srozumitelný pro všechny. Encyklopedie se píše pro neodborníky a i když se předpokládá nějaká úroveň základních znalostí (většinou středoškolské úrovně), nelze spoléhat na to, že čtenáři znají to, co Vy.
Obsah
Speciální znaky
Všechny běžné znaky (písmena, čísla) se nemění až na speciální znaky. # $ % _ \ { } které mají význam při vytváření vzorců. Pokud je potřebujete, stačí před ně napsat zpětné lomítko (to se samo o sobě zapíše jako \backslash).
Indexy
Pro horní index je znak ^ pro dolní index _.
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle ds^2 = dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2}
zápis: ds^2 = dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2
zápis: R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}\,\!
Řecká a další písmena
Jako řecká písmena slouží znak \ následovaný názvem písmene v angličtině, např. \alpha, \beta, atd.
zápis: \alpha \beta \gamma \Gamma \phi \Phi \Psi\ \tau \Omega
Příklady pro množiny, švabach a hebrejštinu následují.
zápis: x\in\mathbb{R}\sub\mathbb{C}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}\cdot\mathbf{y} = 0}
zápis: \mathbf{x}\cdot\mathbf{y} = 0
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \aleph \beth \gimel \daleth}
zápis: \aleph \beth \gimel \daleth
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathcal{ABC}}
zápis: \mathcal{ABC}
zápis: \mathfrak{a} \mathfrak{A} \mathfrak{B}
Diakritika
Vložíte-li do <math> ne-ASCII znak, objeví se ve výstupu červená chybová hláška, např. Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle á} .
Diakritiku je však možné vložit pomocí TeXových příkazů:
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \acute{a} \quad \check{a} \quad \grave{a} \quad \breve{a} \quad \tilde{a} \quad {\hat a}}
zápis: \acute{a} \quad \check{a} \quad \grave{a} \quad \breve{a} \quad \tilde{a} \hat{a}
Matematické symboly
Číselné a jiné relace
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \leq < \ll \gg > \geq \nleq \ngeq \dot= \equiv {\not \equiv} \ne \sim \nsim \simeq {\not \simeq} \approx {\not \approx}}
zápis: \leq < \ll \gg > \geq \nleq \ngeq \dot= \equiv {\not \equiv} \ne \sim \nsim \simeq {\not \simeq} \approx {\not \approx}
Množinové vztahy
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \subset \subseteq \supset \supseteq \in {\not \in} \ni}
zápis: \subset \subseteq \supset \supseteq \in {\not \in} \ni
Logické spojky
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \land \lor \lnot \Leftarrow \Rightarrow \Leftrightarrow \nLeftrightarrow \Uparrow}
zápis: \land (nebo \and) \lor \lnot (nebo \neg) \Leftarrow \Rightarrow \Leftrightarrow \nLeftrightarrow \Uparrow
Geometrie a další
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \parallel \nparallel \perp \angle \nabla \backslash \forall \exists}
zápis: \parallel \nparallel \perp \angle \nabla \backslash \forall \exists
Standardní funkce
Standardní funkce je potřeba uvádět jako
zápis: \sin x + \ln y +\operatorname{sgn}\,z
nikoliv pouze
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle sin x + ln y + sgn z\,\!}
zápis: sin x + ln y + sgn z
Zlomky a odmocniny
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x) = 2x + \frac{x - 7}{x^2 + 4}}
zápis: f(x) = 2x + \frac{x - 7}{x^2 + 4}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}
zápis: \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sqrt[3]{q + \sqrt{ q^2 - p^3 }} + \sqrt[3]{q - \sqrt{ q^2 - p^3 }}}
zápis: \sqrt[3]{q + \sqrt{ q^2 - p^3 }} + \sqrt[3]{q - \sqrt{ q^2 - p^3 }}
Závorky a absolutní hodnota
zápis: \|f\| = \inf \{ K \in \langle 0,+\infty) : |f(x)| \leq K \|x\| \mbox{ pro každé } x \in X \}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right)}
zápis: f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right)
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right|}
zápis: \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right|
Matice a pole
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}} Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} \lambda - a & -b & -c \\ -d & \lambda - e & -f \\ -g & -h & \lambda - i \end{vmatrix}} Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} \mbox{První číslo} & x & 8 \\ \mbox{Druhé číslo} & y & 15 \\ \mbox{Součet} & x + y & 23 \\ \mbox{Rozdíl} & x - y & -7 \\ \mbox{Součin} & xy & 120 \end{matrix}}
zápis: \begin{pmatrix}a & b & c \\d & e & f \\g & h & i \end{pmatrix}
\begin{vmatrix}\lambda - a & -b & -c \\-d & \lambda - e & -f \\-g & -h &
\lambda - i \end{vmatrix}
\begin{matrix}\mbox{První číslo} & x & 8 \\\mbox{Druhé číslo} & y & 15 \\
\mbox{Součet} & x + y & 23 \\\mbox{Rozdíl} & x - y & -7 \\
\mbox{Součin} & xy & 120 \end{matrix}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(n)=\left\{\begin{matrix} n/2, & \mbox{pokud }n\mbox{ je liché} \\ 3n+1, & \mbox{pokud }n\mbox{ je sudé} \end{matrix}\right. }
zápis: f(n)=\left\{\begin{matrix} n/2, & \mbox{pokud }n\mbox{ je liché} \\ 3n+1, &
\mbox{pokud }n\mbox{ je sudé}\end{matrix}\right.
Suma
Pro sumu je příkaz \sum, pro produkt součinů je příkaz \prod, jako horní a dolní meze se používají horní a dolní indexy.
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^N k^2}
zápis: \sum_{k=1}^N k^2
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \prod_{i=1}^N x_i}
zápis: \prod_{i=1}^N x_i
Limity
Pro limity je příkaz \lim s dolím indexem, příkaz \to slouží jako šipka.
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty}x_n}
zápis: \lim_{n \to \infty}x_n
Derivace
V české notaci bývá zvykem psát diferenciály „rovné“ pomocí \mathrm{} jako
- Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}x\,}
zápis: \mathrm{d}x,
tedy např pro derivaci f podle x
- Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm{d}f}{\mathrm{d}x}\,}
zápis: \frac{\mathrm{d}f}{\mathrm{d}x}
Parciální defivace f podle x
- Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \frac{\part f}{\part x}\,}
zápis: \frac{\part f}{\part x}
Derivace podle času se často značívá tečkou
- Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \dot{q}=\frac{\partial q}{\partial t}} , Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \ddot{q}=\frac{\partial^2 q}{\partial t^2}}
zápis: \dot{q}=\frac{\partial q}{\partial t}</math>, \ddot{q}=\frac{\partial^2 q}{\partial t^2}
Integrály
Pro integrál je příkaz \int, popř. \iint, \iiint pro vícerozměrné integrály, pro uzavřený integrál je \oint, pro horní a dolní mez se používá horní a dolní index. Další speciální znak \, se používá pro vynucení mezery.
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \int_{-N}^{N} e^x\, \mathrm{d}x}
zápis: \int_{-N}^{N} e^x\, \mathrm{d}x
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \iint_{\Omega} f(x,y)\, \mathrm{d}x\mathrm{d}y}
zápis: \iint_{\Omega} f(x,y)\, \mathrm{d}x\mathrm{d}y
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y}
zápis: \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y
V české notaci rovněž bývá zvykem psát diferenciály „rovné“ pomocí \mathrm{} (viz výše)
Sazba vzorce pod libovolný symbol
Chceme-li vysázet nějaký vzorec nebo text pod znak operátoru (např. max, nebo Res), potom můžeme použít následující
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \underset{z = c}{\operatorname{Res}}f = 0}
zápis: \underset{z = c}{\operatorname{Res}}f = 0
Renderování vzorce
Některé vzorce jsou vygenerovány jako text, některé jako obrázek PNG. Pokud si chcete vynutit obrázek, připište na konec vzorce
\,\!
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}\,\!}
Poznámka: MediaWiKi pravděpodobně podporuje ještě variantu zobrazení pomocí MathML (viz nastavení), podle všeho je ale v takové případně nutné, aby server posílal správný mime (application/xhtml+xml nebo application/xml). Wikipedia ovšem používá mime text/html. Je to dáno neschopností IE zpracovat XML dokument, tudíž při posílaní správné hlavičky by jeho uživatelům wiki fungovala špatně nebo vůbec.
Zdroj
Článek je částečně převzat z wikipedie, přečíst si jej můžete zde