Míry variability: Porovnání verzí

Řádek 1: Řádek 1:
Pokud chceme charakterizovat náhodně proměnlivé údaje v určitém souboru, nestačí charakterizovat jen střední hodnotu, ale je vhodné určit i míru, v jaké jsou jednotlivé údaje od sebe navzájem rozptýlené. To vymezují míry variability, mezi které se řadí variační rozpětí, rozptyl, směrodatná odchylka a variační koeficient. <ref name="Hendl">Hendl, J. (2006). ''Přehled statistických metod zpracování dat''. Praha: Portál.</ref>
+
Pokud chceme charakterizovat náhodně proměnlivé údaje v určitém souboru, nestačí charakterizovat jen [[Střední hodnota|střední hodnotu]], ale je vhodné určit i míru, v jaké jsou jednotlivé údaje od sebe navzájem rozptýlené. To vymezují '''míry variability''', mezi které se řadí variační rozpětí, rozptyl, směrodatná odchylka a variační koeficient. <ref name="Hendl">Hendl, J. (2006). ''Přehled statistických metod zpracování dat''. Praha: Portál.</ref>
 
== Variační rozpětí (Range) ==
 
== Variační rozpětí (Range) ==
* Variační rozpětí je definováno jako rozdíl mezi nejnižší a nejvyšší hodnotou daného souboru a podává informace o tom, v jaké šířce jsou dané údaje rozprostřené na příslušné škále. Označení pro variační rozpětí je R.  
+
* Variační rozpětí je definováno jako '''rozdíl mezi nejnižší a nejvyšší hodnotou daného souboru''' a podává informace o tom, v jaké šířce jsou dané údaje rozprostřené na příslušné škále. Označení pro variační rozpětí je R.  
 
<big><math>R=X_max-X_min</math>*</big><br />
 
<big><math>R=X_max-X_min</math>*</big><br />
 
<sup>''*U diskrétních proměnných někteří autoři preferují pro výpočet R = (Xmax - Xmin) + 1.''</sup><br />
 
<sup>''*U diskrétních proměnných někteří autoři preferují pro výpočet R = (Xmax - Xmin) + 1.''</sup><br />
Řádek 9: Řádek 9:
 
<math>R=4</math></big>
 
<math>R=4</math></big>
 
== Rozptyl ==
 
== Rozptyl ==
Rozptyl je definován jako průměrná kvadratická odchylka mezi údaji souboru a jejich aritmetickým průměrem<ref name="Ferjencik" />.<br /><br />
+
Rozptyl je definován jako '''průměrná kvadratická odchylka mezi údaji souboru a jejich aritmetickým průměrem'''<ref name="Ferjencik" />.<br /><br />
 
<big><math>s^2=\frac{\sum\left(x_i-x̄ \right)^2} {n-1}</math></big><br />
 
<big><math>s^2=\frac{\sum\left(x_i-x̄ \right)^2} {n-1}</math></big><br />
 
<small>([http://wikisofia.cz/images/8/82/Vzorec_rozptyl.jpg obrázek rovnice])</small><br /><br />
 
<small>([http://wikisofia.cz/images/8/82/Vzorec_rozptyl.jpg obrázek rovnice])</small><br /><br />
Řádek 31: Řádek 31:
 
<small>([http://wikisofia.cz/images/f/fb/Modelovy_priklad_smer.odchylka.jpg obrázek rovnice])</small><br /><br />
 
<small>([http://wikisofia.cz/images/f/fb/Modelovy_priklad_smer.odchylka.jpg obrázek rovnice])</small><br /><br />
 
== Variační koeficient  ==
 
== Variační koeficient  ==
Variační koeficient se používá v případě, kdy chceme posoudit relativní velikost rozptýlenosti dat vzhledem k průměru a někdy se uvádí v procentech<ref name="Hendl" />. Slouží k porovnání variability souborů, které mají nestejné průměry<ref name="Zvara" />.<br />
+
Variační koeficient se používá v případě, kdy chceme posoudit '''relativní velikost rozptýlenosti dat vzhledem k průměru''' a někdy se uvádí v procentech<ref name="Hendl" />. Slouží k porovnání variability souborů, které mají nestejné průměry<ref name="Zvara" />.<br />
  
 
<big><math>VK=\frac{S} {x̄ }</math></big><br />
 
<big><math>VK=\frac{S} {x̄ }</math></big><br />

Verze z 4. 5. 2014, 03:08

Pokud chceme charakterizovat náhodně proměnlivé údaje v určitém souboru, nestačí charakterizovat jen střední hodnotu, ale je vhodné určit i míru, v jaké jsou jednotlivé údaje od sebe navzájem rozptýlené. To vymezují míry variability, mezi které se řadí variační rozpětí, rozptyl, směrodatná odchylka a variační koeficient. [1]

Variační rozpětí (Range)

  • Variační rozpětí je definováno jako rozdíl mezi nejnižší a nejvyšší hodnotou daného souboru a podává informace o tom, v jaké šířce jsou dané údaje rozprostřené na příslušné škále. Označení pro variační rozpětí je R.

*
*U diskrétních proměnných někteří autoři preferují pro výpočet R = (Xmax - Xmin) + 1.
Nevýhodou variačního rozpětí je velká citlivost vůči extrémním hodnotám a také nereflektování způsobu, jakým jsou údaje rozložené uvnitř souboru[2].

Modelový příklad: {1,2,3,4,5}
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R=5–1}

Rozptyl

Rozptyl je definován jako průměrná kvadratická odchylka mezi údaji souboru a jejich aritmetickým průměrem[2].

Nelze pochopit (syntaktická chyba): {\displaystyle s^2=\frac{\sum\left(x_i-x̄ \right)^2} {n-1}}
(obrázek rovnice)

Podle Hendla[1] není při větších rozsazích významný rozdíl mezi číslem n nebo n – 1. Dělení číslem n se používá v případě, kdy počítáme rozptyl pro všechny prvky populace.
Modelový příklad: {1,2,3,4,5}



(obrázek rovnice)

Interpretace rozptylu může být někdy nesrozumitelná, a proto se v praxi jako nejčastější ukazovatel míry variability používá druhá odmocnina z rozptylu označovaná jako směrodatná odchylka[2].

Směrodatná odchylka

Směrodatná odchylka je průměrná vzdálenost mezi jednotlivými údaji a jejich aritmetickým průměrem. Informuje nás o tom, jak daleko jsou v průměru jednotlivé údaje rozprostřené kolem svého aritmetického průměru[2]. Vypočítá se jako odmocnina z rozptylu a na rozdíl od rozptylu má stejný fyzikální rozměr jako původní veličina[3].

Nelze pochopit (syntaktická chyba): {\displaystyle s=\sqrt s^2=\sqrt\frac{\sum\left(x_i-x̄ \right)^2} {n-1}}
(obrázek rovnice)

Modelový příklad: {1,2,3,4,5}



(obrázek rovnice)

Variační koeficient

Variační koeficient se používá v případě, kdy chceme posoudit relativní velikost rozptýlenosti dat vzhledem k průměru a někdy se uvádí v procentech[1]. Slouží k porovnání variability souborů, které mají nestejné průměry[3].

Nelze pochopit (syntaktická chyba): {\displaystyle VK=\frac{S} {x̄ }}
(obrázek rovnice)

Modelový příklad: {1,2,3,4,5}


(53%)

(obrázek rovnice)

Zdroje

  1. 1,0 1,1 1,2 Hendl, J. (2006). Přehled statistických metod zpracování dat. Praha: Portál.
  2. 2,0 2,1 2,2 2,3 Ferjenčík, J. (2006). Základy štatistických metód v sociálnych vedách. Košice: Univerzita Pavla Jozefa Šafárika.
  3. 3,0 3,1 Zvára, K. (2004). Biostatistika. Praha: Nakladatelství Karolinum.